Motion of a Fighter Jet on an Aircraft Carrier
Calculating the initial acceleration on the deck involves using the formula a = (vf - vi) / t, where vf is the final velocity, vi is the initial velocity, and t is the time taken to reach the final velocity. In this scenario, the jet starts from rest, so the initial velocity is 0 m/s. By plugging in the given values, we find that the initial acceleration on the deck is 0.688 m/s².
Next, determining the final velocity as the jet leaves the deck requires using the equation vf = vi + at, where vf is the final velocity, vi is the initial velocity, a is the acceleration, and t is the time. Since the jet starts from rest, the initial velocity is 0 m/s. By substituting the given values, we calculate that the final velocity as the jet leaves the deck is 481.3 m/s.
Calculating the horizontal component of acceleration as the jet leaves the deck involves using the formula ax = a * cos(44.8°), where ax is the horizontal component of acceleration, a is the acceleration, and the angle is 44.8°. By substituting the provided values, we find that the horizontal component of acceleration is 3.96 m/s².
Lastly, determining the vertical component of acceleration as the jet leaves the deck requires using the equation ay = a * sin(44.8°), where ay is the vertical component of acceleration, a is the acceleration, and the angle is 44.8°. By plugging in the necessary values, we calculate that the vertical component of acceleration as the jet leaves the deck is 3.92 m/s².